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Failure of microemulsion models to exhibit a triple line in two dimensions
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Evidence has recently been presented [P. A. Slotte, Phys. Rev. A 46, 6469 (1992)] showing that a two-
dimensional lattice model for water-oil-surfactant mixtures exhibits a triple line along which water-rich,
oil-rich, and microemulsion phases coexist. We present an argument and numerical evidence that such a
triple line will not exist if the efficiency of the surfactant is sufficient to produce a lamellar phase. The
failure of the model to produce a triple line for an efficient surfactant can be linked to the fact that the
surfactant monolayers separating regions of water and oil are only one dimensional. The implication is
that two-dimensional models are somewhat inappropriate for modeling the amphiphilic behavior of real

three-dimensional ternary mixtures.

PACS number(s): 64.70.Ja, 64.60.Cn, 05.50.+q

Lattice models have been successful in modeling
behavior of water-oil-surfactant mixtures [1-3]. These
models employ a lattice where molecules are typically re-
stricted to occupy only the sites of the lattice rather than
any point in space. Although three-dimensional lattices
are more realistic, it is advantageous when applying
Monte Carlo methods to use two-dimensional lattices.
Previous work [5-7] has indicated that a two-
dimensional lattice may be sufficient for obtaining a triple
line along which water-rich (W), oil-rich (O), and mi-
croemulsion phases coexist as observed experimentally in
three dimensions [4]. (A microemulsion is generally
defined as the portion of the disordered (D) phase that
has sufficient structure to produce a peak at small,
nonzero wave vectors in the water-water structure func-
tion, or alternatively, produce long-wavelength oscilla-
tion in the related correlation function [1,2,5-11].) In
the context of these models, this means a second-order
line separating the W + O coexistence region from the D
phase exhibits a tricritical point past which the transition
is first order. Matsen and Sullivan [8] addressed the evi-
dence in Refs. [5] and [6] and instead suggested that such
a transition should always be second order when the
lamellar phase is present. Hence, there would be no
W + O + D three-phase coexistence once the efficiency of
the surfactant is great enough to produce a lamellar
phase. Contrary to this conclusion, Slotte [7] has claimed
to have found a tricritical point implying the existence of
a triple line in the presence of a lamellar phase.

This Brief Report starts by first establishing that the
evidence presented by Slotte does not necessarily imply
the existence of a tricritical point. Then we describe the
scenario presented by Matsen and Sullivan [8], which
suggests how the phase diagram evolves with increasing
efficiency of the surfactant and conflicts with the ex-
istence of the above tricritical point. Next, the argument
given for this scenario in Ref. [8] is elaborated on. This
argument does hinge on one important assumption. We
provide motivation for this assumption and quote several
previous works that support it, but admittedly it is a
weakness in the argument. For that reason, numerical
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evidence is also provided to support this point of view.
Although this evidence is not sufficient to prove that
point of view, the evidence is consistent with it, whereas
it is not consistent with the tricritical point claimed by
Slotte. When combined, the evidence presented here
strongly favors the Matsen-Sullivan scenario over the tri-
critical point proposed by Slotte. Although this paper
concerns a specific model, it does in the end provide a
warning about modeling three-dimensional amphiphilic
systems with two-dimensional models.

Slotte uses the standard Metropolis Monte Carlo
method with single-site flips together with finite-size scal-
ing to locate the second-order line. At high tempera-
tures, this approach works well; however, as the tempera-
ture is decreased, it is bound to become less effective. For
instance, critical slowing down would become a problem
at low temperatures. This alone can produce a hysteresis
[12], and so the hysteresis observed by Slotte is not neces-
sarily due to the presence of a first-order transition.
However, his claim that a tricritical point exists does not
just rest on this, but also on the apparent finite-size scal-
ing of the surfactant susceptibility with tricritical ex-
ponents. This might be convincing, except for a number
of weaknesses in his finite-size-scaling plots (one for tem-
perature and another for chemical potential). First, these
plots only have points to one side of the alleged tricritical
point. Secondly, the curves for different system sizes
have relatively little overlap, making it unclear whether
they all follow the same universal curve. It is also not
clear that the simulations were done close enough to the
tricritical point for scaling to occur. Finally, the use of
logarithmic scales could reduce the sensitivity to true
scaling behavior, making data that do not really scale ap-
pear to do so. In conclusion, it is felt that the scaling
plots cannot be considered compelling evidence for the
existence of a tricritical point.

Contrary to these scaling plots for the tricritical point,
Slotte presents sample scaling plots for the second-order
line that are convincing. This clears up a problem no-
ticed earlier [8] with the location of this transition in Ref.
[5]. With these new results of Slotte, it seems certain that
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the location of this transition in Ref. [5] is incorrect. It is
unclear what would cause such an error and to what ex-
tent it might effect other results in Ref. [5]. This is men-
tioned here primarily to alert the reader that a certain de-
gree of caution should be taken in quoting results from
this earlier work.

The lattice models used in Refs. [5], [7], and [8] employ
a two-dimensional square lattice. The ith lattice site is
assigned a state variable o; that takes on the values +1,
0, and —1, representing water, surfactant, and oil, re-
spectively. A second state variable s; is zero when the ith
site is not occupied by surfactant, and, otherwise, it is a
unit vector pointing towards one of the four nearest-
neighbor sites specifying the orientation of the surfactant
molecule. In terms of these state variables, the Hamil-
tonian used in Ref. [5] is

H=—3 {(Ji0,0;+J,[0,(s;1;)+0;(s;1;)]}
(i,j)

+u, 3ol (1)

The symbol {i,j) denotes that the sum is over all distinct
pairs of nearest-neighbor sites i and j. The vector r;;,
measured in units of the lattice spacing, is the displace-
ment of lattice site j relative to lattice site i. The concen-
tration of surfactant, p, is controlled by the chemical po-
tential u,, and the ratio J,/J,; determines the efficiency
of the surfactant (J, and J, are both positive). Refer-
ences [7] and [8] introduced more general Hamiltonians,
but much of the work in these papers is done with the pa-
rameters of the additional terms set to zero. The model
in Refs. [6] and [9] uses a somewhat different Hamiltoni-
an, but it is still closely related to the present model [7]
and is thus expected to behave similarly.

When J, =0, the present model reduces to the Blume-
Capel (BC) model [13], for which there is a tricritical
point in two dimensions [14,15]. The suggestion by
Matsen and Sullivan [8] was that as J, increased, this tri-
critical point would move towards zero temperature.
Specifically, it would reach T =0 at J, /J, =1 just as the
lamellar (L) and square (S) phases appear [5]. Figures
1(a) and 1(b) show the expected topology of the phase dia-
gram for J,/J; <% and J,/J > %, respectively, in the
temperature-chemical-potential plane. Figures 2(a) and
2(b) show the corresponding plots in the temperature-
density plane. We stress that the topology of the phase
diagrams for J, /J, > 1 are not consistent with mean-field
theory, but that those for J, /J, < 1 are.

In this paper, we are not concerned with the transi-
tions that bound the L and S phases in Figs. 1(b) and 2(b).
They are drawn as first-order transitions in agreement
with the work of Laradji et al. [5]. We do not speculate
how these first-order transitions extend to zero tempera-
ture in Fig. 2(b), but we think the second-order line ter-
minates at p, =0 based on our numerical results, as well
as those of Ref. [8]. As the evidence in Refs. [5] and [6]
suggests, we do believe the D phase extends between the
W +O and L regions down to zero temperature, as
shown in Fig. 1(b). It is this belief that leads us to con-
clude that the transition from W + O to D is second order
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FIG. 1. The expected topologies of the phase diagram in the
temperature—chemical-potential plane for (a) J,/J; <0.5 and
(b) J,/J;>0.5. Solid and dashed lines represent first- and
second-order transitions, respectively. The dot in case (a) indi-
cates the location of the tricritical point.

for all temperatures when J,/J,>1. In three dimen-
sions, the D phase is not expected to separate the W +O
and L regions down to T =0, and, consequently, a triple
line is possible in this case. We note that the disorder
phase in the axial next-nearest-neighbor Ising (ANNNI)
model similarly extends to zero temperature in two di-
mensions, but does not in three dimensions [16].

A simple argument explains why the D phase separates
the W +0O and L regions in two dimensions but not in
three dimensions. Imagine placing an m Xn block of oil
in the W phase when W and O are in coexistence. There
would be two unfavorable contributions to the energy for
such a defect: one due to the four edges and another due
to the four corners. As p, is increased and the L phase is
approached, the W /O surface tension becomes ultra low
and the energy of the edges becomes negligible. This
leaves only the energy of the corners, which is indepen-
dent of the actual size of the defect. Although there may
be a very small population of such defects at low temper-
atures, they may become macroscopic in size as the L
phase is approached and still disorder the W + O region,
preempting a transition to the L phase. In three dimen-
sions things are different. Here an I Xm Xn defect has
three contributions to the energy—the six faces, the
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FIG. 2. The phase diagrams from Fig. 1 shown as they would
appear in the temperature-vs-density plane (0<p, <1). Note in
case (b) that the coexistence regions, D+L, L+S, and S+D,
have not been labeled, and that the first-order lines have not
been extended to zero temperature.
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twelve edges, and the eight corners. Similarly, the ener-
gy of the faces becomes negligible as the L phase is ap-
proached and the energy of the corners does not depend
on the size of the defect. The energy due to the edges,
however, increases with the size of the defect preventing
them from becoming large. Because of this, the W +O
region should not become disordered prior to the L phase
in three dimensions.

The argument that the W +O to D transition should
be second order down to T =0 for J,/J; > 1 stems from
the fact the phase diagram should evolve continuously as
J,/J; increases. The contradiction that arises if one as-
sumes otherwise is only noticeable in the temperature-
density phase diagrams, Figs. 2(a) and 2(b). (This may in
part be why such a contradiction was not noticed in Refs.
[5] and [6] as only temperature-chemical-potential phase
diagrams were plotted.) If one assumes the W +O to D
transition remains first order at low temperatures for
Jy/J,>%, then as J,/J; increased past ; the line
separating the W +0O +D and D regions in Fig. 2(a)
would have to make a discontinuous jump at 7 =0 from
ps =1 to some smaller value of p, to the left of the L
phase. In three dimensions, the D phase does not extend
between the W +O and L phases down to zero tempera-
ture, and so the phase diagram can evolve continuously
into phase diagrams like those shown in Ref. [1], for
which the W + O + D triple line remains.

While the above argument strongly suggests that the
W + O to D transitions should not exhibit a tricritical
point for J, /J; >4, it is not a rigorous proof. The weak-
ness in the argument is that the D phase may not extend
to zero temperature despite the numerical evidence in
Refs. [5] and [6] and the fact it is proven to happen simi-
larly in the ANNNI model [17]. Admittedly, all it takes
is a long-range attraction between lamellae to drive the
W + O region to the L phase by a first-order transition.
In this case, the W /O surface tension does not become
ultralow and the above argument breaks down. For this
reason, it is important that at 7 =0 the W /O surface ten-
sion actually becomes zero as the proposed
W +0O +D + L multiphase point is approached. This
does occur in the present model, but whether this is
sufficient can be questioned. Alternatively, it may be
better to demonstrate the above claim by actually calcu-
lating the position of the tricritical point as a function of
J,. If one illustrated that the tricritical temperature 7T, in
the BC model approaches zero as J, /J; increases from 0
to 1, the claim by Matsen and Sullivan would be virtually
indisputable. Potentially, this could be done numerically
using, for example, the Monte Carlo renormalization-
group method [14]. Still, generating a sufficiently accu-
rate plot of T, versus J, by such a method would be nu-
merically demanding.

We instead opt for the less demanding method used in
Ref. [8]. This method considers a 4X o strip of the two-
dimensional lattice acted upon by fields to which the
transfer-matrix method is applied. The fields are deter-
mined by self-consistent conditions much like in mean-
field theory. Likewise, the tricritical point as well as
phase transition are calculated in a manner similar to
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that in mean-field theory [18]. Just as in mean-field
theory, this method will suppress fluctuations and conse-
quently be somewhat inaccurate. More specifically, this
suppression of fluctuations will tend to stabilize three-
phase coexistence, and thus produce a triple line that ex-
tends higher in temperature than the actual triple line.
Hence, for a given value of J,, the T, calculated with this
approximation should be an upper bound on the true
value of T,.

Figure 3(a) shows the plot of T, versus J, calculated in
the above manner. AtJ,=0, kzT,/J, =0.746, which is,
as we expect, larger than the accepted value of 0.61
[14,15]. As J, increases, T, decreases monotonically to
zero at J, /J, =0.9, beyond which we find no evidence of
a tricritical point. Remembering that this curve should
be an upper bound on the actual curve, Fig. 3(a) is con-
sistent with the belief that 7, should approach zero at
J,/J1=%. On the other hand, it seriously conflicts with
the conclusion by Slotte that kz7T,/J,=0.52+0.03 at
J,/J,=3. Figure 3(b) plots the surfactant density at the
tricritical point, p,,, as a function of J,. This plot sug-
gests that as 7, approaches zero, so does p, ,, supporting
our belief that the T"=0 end of the second-order line in
Fig. 2(b) terminates at p, =0. This makes sense, since at
low temperatures the W + O region presumably becomes
disordered due to a small population of very large de-
fects, which essentially contain surfactant only along
their edges, contributing very little to the bulk surfactant
density.

The failure of the present model to produce a triple
line is linked to a more general problem that would
plague all two-dimensional models. Even the much
different two-dimensional model studied by Chen et al.
[19], to which the above argument does not apply, still
does not seem to exhibit such a triple line according to
their Monte Carlo work, contradicting the mean-field
prediction [20]. The problem arises because the surfac-
tant monolayers that tend to form between water and oii
regions are only one dimensional. Needless to say, the
behavior with regards to fluctuations will differ substan-
tially between the one-dimensional monolayers and more
realistic two-dimensional monolayers. Although this fact
implies that the present two-dimensional model is some-
what inappropriate for modeling real three-dimensional
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FIG. 3 (a) The temperature and (b) surfactant density of the
tricritical point as a function of J,/J; as calculated by the
present approximation.
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water-oil-surfactant mixtures, this model does exhibit in-
teresting behavior similar to that of the ANNNI model
[16]. Just as the ANNNI model was studied primarily
because of its interesting behavior rather than its descrip-
tion of a real physical system, we hope the present model
attracts such interest. The model certainly presents a
challenge due to the strong fluctuations it exhibits. Like-
wise, we hope its three-dimensional counterpart [1,3],
which seems to describe reasonably the above-mentioned
ternary mixtures, attracts further interest. Although it
has been studied by mean-field-like approximations, the
effect of fluctuations has not been studied and we do ex-
pect them to be significant when J, is large, but not to
the same degree as in two dimensions. We note that the

one-dimensional version is already well understood [10].
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